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We present a Lagrangian describing an idealized liquid interacting with a par- 
ticle immersed in it. We show that the equation describing the motion of the 
particle as a functional of the initial conditions of the liquid incorporates noise 
and friction, which are attributed to specific dynamical processes. The equation 
is approximated to yield a Langevin equation with parameters depending on the 
Lagrangian and the temperature of the liquid. The origin of irreversibility and 
dissipation is discussed. 
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1. I N T R O D U C T I O N  

Dynamical problems are becoming a growing focus of attention in conden- 
sed matter physics. A partial list of subjects includes: critical dynamics, 
dynamics of random systems, entanglement of polimers, and I /f  noise. The 
starting point of many of the investigations in these areas is the 
phenomenological Langevin equation. The problem of deriving the 
Langevin equation from basic principles and understanding the 
approximations involved is thus of great importance. 

Attempts to obtain Brownian motion from a mechanical description 
date back to the 1940s. (~) Some of the methods used over the years are 
phenomenological or qualitative in nature, (2) while other are very general 
and use powerful mathematical tools. (3 5) The most important result 
obtained by the more sophisticated treatments is the generalized fluc- 
tuation-dissipation theorem. Two difficulties are encountered in those 
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methods: it seems that they rely on the assumption of thermal 
equilibrium, ~6'7) and the Langevin parameters are not calculated explicitly 
in terms of the mechanical parameters. 

A method that avoids those difficulties and at the same time suggests 
more insight into the problem was introduced by Feynman and VernonJ 8) 
They couple the Brownian particle linearly to a system of harmonic 
oscillators, thus obtaining an exactly soluble model. This method has been 
widely applied to many problems involving quantum dissipation. ~9 13) The 
single-particle behaviour is shown to be affected by effective friction and 
noise, which are calculated as functions of the mechanical parameters. 

In spite of the success of this model, one can question whether it is 
realistic. What may be unrealistic about linear Lagrangians? Clearly, the 
medium itself is never linear, but we know cases (e.g., solids at low tem- 
peratures, quantum liquids) where a linear mechanical description is very 
good. The difficulty lies in the linear coupling between the Brownian par- 
ticle and the degrees of freedom of the medium. A simple realistic coupling 
is a two-body potential between the Brownian particle and the particle of 
the host medium. However, if the Brownian particle is not bound to a 
given site of the host medium on a microscopic scale, there is no way to 
expand any realistic interaction to low orders in the coordinates of the 
Brownian particle. The situation was illuminated by Dekker, ~13) who 
describes a mechanical system that has linear equations of motion. The 
difference between such a system and a medium-particle system is evident. 

The purpose of the present paper is to present a model that lies 
between the two extreme approaches and is more realistic than the linear 
models and more tractable than the full many-body system. To this aim we 
describe the medium as a linear system of phonons, while the interaction 
between the medium and the particle is a realistic short-range interaction. 
The interaction is linear in the density fluctuations (which for solid and 
liquid media correspond to the coordinates of the longitudinal phonons), 
but is nonlinear in the coordinates of the particle. 

We study the classical equations of motion and show that the particle 
is affected by damping and noise. At this stage no approximation, apart 
from the assumption that the system is infinite, is made. Next we 
approximate and average over the initial conditions of the medium to 
obtain the simple structure of the usual Langevin equation as well as the 
temperature-dependent friction coefficient and noise. We finally show that 
the particle thermalizes. Namely, after a long time its average energy is 
~-kB T, where T is the temperature characterizing the medium initially. 

The paper is organized as follows. In Section 2 we introduce the 
Lagrangian that describes the physical system we consider. In Section 3 we 
calculate the corresponding Euler-Lagrange equations. The exact 
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integrodifferential equation for the Brownian particle is studied in Sec- 
tion 4. In Section 5 we discuss some aspects concerning the Langevin 
equation and the relation between the exact equation for the particle and 
the Langevin equation. The friction coefficient is calculated in terms of the 
mechanical parameters in Section 6 and the noise is calculated in Section 7. 
Section 8 contains a summary of results. 

2. T H E  L I Q U I D - P A R T I C L E  L A G R A N G I A N  

The liquid is described by the local current density 3(r) and the local 
number density p(r). Let m be the mass of a liquid particle; then we can 
write a kinetic term for the liquid 

lm f ~dr (1) 

The potential energy term for the liquid is 

Vliq = f p(r) V(r - r') p(r') dr dr'  (2) 

where V is the two-body (effective) potential between the liquid particles. 
The typical interaction between the liquid particles is a short-range 

interaction. We assume that the range of this interaction is much shorter 
than any other length scale in the system we are considering. For sim- 
plicity, we therefore replace V ( r - r ' )  by a &function interaction, so that 

,f vliq=g;~ p2(r) dr (3) 

Using any other short-range potential does not change the final results 
qualitatively. 

In order to write a Lagrangian for the liquid, we have to keep in mind 
that J and p are not independent variables, but obey the equation of 
continuity 

V. J + ~-~Pt = 0 (4) 

In order to ensure Eq. (4), we introduce a local Lagrange multiplier #(r). 
The Lagrangian for the liquid is therefore 
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Later we shall see that/~ is the potential for the velocity field in the liquid; 
thus, the model we are considering for the liquid allows only irrotational 
flOWS. 

The Lagrangian (5) can be simplified by assuming small fluctuations 
in the density, that is, assuming that (p - fi)/~ ~ 1, where fi is the average 
density. Expanding the kinetic energy term in the small parameter and 
taking the leading term, we obtain 

f I ~ j 2 ( r ) 1  2p2(r) -/~(r) (V �9 J + ~-~Pt) ] (6) Lli q : dr m - - 7  2 

Consider now an external particle of mass M immersed in the liquid. The 
interaction between the liquid and the particle immersed in it is 

Vint = f p(r) U(r -- x) dr (7) 

where x is the coordinate of the particle and U is the potential between a 
liquid particle and the external particle. The kinetic energy term for the 
external particle is simply �89 2. The Lagrangian describing the liquid- 
particle system is therefore 

f [~ j 2 ( r ) 1  )~p2(r) _ #(r) (V.  j + ~Pt) L =  dr m ~ -  2 

- p ( r )  U(r--x) +~M:~ 2 (8) 

Clearly the liquid part of the Lagrangian is simplified and lacks some of the 
attributes of a real liquid, such as nonlinear interactions and interactions 
leading to vorticity. It does retain, however, the longitudinal waves as 
excitations. These are the only excitations that are important at low tem- 
peratures. The terms we have neglected correspond to interactions among 
those excitations. For details concerning such low-temperature fluids see 
Landau. ~4) 

A similar Lagrangian is obtained in the study of a harmonic solid 
interacting with an external particle (again the harmonic solid is a good 
approximation for a real solid in the low-temperature rcgime). The 
Lagrangian in this case is 

1 
L s  = f-~ dq [m(/Iq- ti _q -~Oq~Uq- u _q) 

-- iq" u _ q V ( q )  exp(iq �9 x)] + 2 Mx2 (9) 
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where m is the mass of the atom of the solid, Uq is the Fourier transform of 
the displacement field, ~oq is the corresponding frequency, and v ( q )  is the 
Fourier transform of the interaction potential between the external particle 
and a solid atom. 

Note that the transverse degrees of freedom are not coupled to the 
particle. The Lagrangian describing the longitudinal waves in the solid and 
the external particle is the same as  Lli q. We continue the calculation with 
Lli q. The results for the harmonic solid follow in a straightforward manner. 

3. E U L E R - L A G R A N G E  E Q U A T I O N S  

Consider first the equations for the liquid in the absence of the 
external particle, 

m 
- -  J (r )  + V/~(r) = 0 (10)  
P 

- 2p(r) + 0/~(r) = 0 (11 ) 
0t 

V. J(r)  + c~p(r) = 0 (12) 
Ot 

Substituting Eqs. (10) and (11) in Eq. (12), we obtain 

m 0z# 
V2# fi2 & 2 - 0  (13) 

Equation (13) is a homogeneous wave equation. The velocity of sound is 
given by 

c = ( 2 f i / m )  '/2 (14) 

Clearly, by Eqs. (10) and (11), J and p obey the same wave equation. 
Adding the external particle, we obtain the equations 

and 

MS~ + I p(r) V x U(r - x) dr = 0 (15) 

V 2 # _ 0 2 # _ 1  1 0 U ( r - x )  (16) 
&2 c 2 c~t 
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Using Eqs. (10) and (11), we obtain 

1 O2p 1 2 
v2P  - 7 - b - V  = - vr t ; ( r  - ,,) (17) 

2 1 ~2J  1 6 ~ 
V J = Vr V(" -- x)  (18) 

We see that the external particle acts as a source to the various wave 
equations. 

We emphasize that the equations of motion (15), (17) do not contain 
any dissipative mechanism put in by hand. They are the exact equations 
obeyed by the system described by the Lagrangian. Heat modes were not 
introduced in the description of the liquid because one of our aims in this 
paper is to obtain dissipative motion for the particle from a purely 
mechanical Lagrangian. Introduction of heat modes certainly gives a better 
description of the liquid at higher temperatures. However, it might have 
confused the issue by associating the resulting dissipative force acting on 
the particle with the dissipation in the liquid. 

4. GENERIC LANGEVIN EQUATION FOR THE EXTERNAL 
PARTICLE 

The force term in a generic Langevin equation for an external particle 
immersed in a liquid breaks up into two parts. One part depends on the 
trajectory of the particle and includes the dissipative force and the regular 
force [e.g., -7/~ + F(x)].  The second part is a noise term that averages to 
zero and does not depend on the trajectory of the particle. In this section 
we show that the force acting on the particle we considered in the previous 
section is similar to that of a generic Langevin equation. 

The force acting on the particle is given by Eq. (15), 

F = f p(r) Vr U(r - x) (19) 

The force depends on the trajectory x(t) through Eq. (17). 
Suppose that the particle is immersed at t = 0 and suppose that at that 

time the liquid is totally at rest (p = fi, ~p/Ot = 0). Let the solution of the 
equation 

1 82p 1 
V2P c 2~t 2 -  2 V ~ U ( r - x )  O(t) (20) 
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with calm initial conditions be po(r, t). The solution for general initial 
conditions is then 

p(r, t) = po(r, t) + pf(r, t) (21) 

where &,(r, t) is a solution of the free (homogeneous) wave equation with 
the same initial conditions, except that • = 0 at t = 0. 

Clearly, Po is a functional of x(t), while &- knows nothing about the 
particle. The force acting on the particle is therefore 

F = f po(r, t )VrU(r-x)dr- t - fp f ( r  , t )VrU(r -x )dr  (22) 

We calculate next the explicit form of the first term in Eq. (22) as a 
functional of the particle trajectory x(t). We express Eq. (20) in the form 

1 c32p 1 2 
VZp c2•t 2 - - ~ V  r J  U ( r - x ( ~ ) ) O ( r ) 6 ( r - r ' ) b ( t - v ) d r ' &  (23) 

A particular solution of Eq. (23) is 

P = 4-~2 I r - r ' l  c 

( I r - r ' l . )  (24) xO t 
c 

Since ~ = 0 for t < 0, the particular solution may be identified with P o -  fi 
(because it solves the same equation with the same initial conditions). 

The force the particle exerts on itself via the liquid is therefore 

Fp = f p0(r, t) Vr U(r - x) dr 

_ 14n)~ ~J V U ( ~ ) I v  2 U ( R + ~ + x ( t ) - x  ( t - R ) )  

x O ( t - R )  dR d~  (25) 

where ~ = r -  x(t) and R = r - r ' .  The equation of motion for the particle 
in the liquid is 

= Fp + f pf(r, t) V r U(r - x) dr = Fro t (26) M~ 

At this point we digress to discuss irreversibility and dissipation. 
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Equation (26) will serve as an example for the discussion. The equation of 
motion for the particle, Eq. (26), is not reversible. Namely, if at a given 
time we reverse the direction of the velocity of the particle, it will not track 
back along its path in time. The original Euler-Lagrange equations (15) 
and (17) are obviously reversible. The original equations, however, are 
reversible under a reversal of the velocities corresponding to all the degrees 
of freedom. Therefore, in order to reverse the motion of the particle in 
Eq. (26), a proper modification of the medium has to be made in addition 
to reversing the particle's velocity. 

The irreversibility of the motion of the particle is therefore just a con- 
sequence of considering the particle (or, in general, a subsystem) and 
ignoring the rest of the system. Irreversibility has nothing to do with any 
averaging process or with the whole system being infinite. In fact, the same 
would be true for two interacting particles if only the velocity of one of 
them is reversed. 

The fact that the system is infinite is important, however, to dis- 
sipation. Note that we distinguish between irreversibility and dissipation. 
Obviously, every dissipative system is irreversible, but not any irreversible 
system is dissipative. As can be seen from the particular solution for the 
density, Eq. (24), the medium is affected by the particle through the 
creation of outgoing waves radiated by the particle. Clearly, b y  such a 
procedure the particle can only lose energy to the medium, and this is the 
origin of dissipation. 

The fact that only outgoing waves are involved relies heavily on the 
system being infinite. In a finite system, the Green's function of the wave 
equation also must include reflections from the walls. As a result, a particle 
in the middle of a container of size L will experience dissipation for times 

< L/c, while at larger times the particle may be accelerated by waves 
reflected from the walls. 

The origin of dissipation is radiation of phonons (for any trajectory of 
the particle and initial conditions of the liquid!); Fp in Eq. (26) is therefore 
a dissipative force. 

The force exerted on the particle due to Pl is uncorrelated with the 
trajectory of the particle, since p f  depends solely on the initial conditions of 
the liquid. That force, for given initial conditions of the liquid and the par- 
ticle, may be viewed as a realization of a random force. Its statistical 
properties will be discussed in subsequent sections. 

So far we have shown that the equation of motion of the particle 
resembles a generic Langevin equation in many respects. In the next sec- 
tions we tackle the problem of transforming Eq. (26) into the familiar 
Langevin equation and discuss the approximations involved in that 
process. 
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5. L A N G E V I N  E Q U A T I O N  

The equation of motion for the particle, Eq. (26), gives the force acting 
on the particle in terms of the initial conditions of the liquid. It can 
therefore yield the full trajectory of the particle as a functional of the initial 
conditions of the liquid and the particle. Equation (26) is an exact, non- 
reversible equation, describing a particle affected by a fluctuating noise and 
by dissipation. No averaging process was used in order to obtain Eq. (26). 

We will show that, under certain conditions, Eq. (26) can be transfor- 
med into the phenomenological Langevin equation. This step involves an 
averaging over the initial conditions of the liquid. No averaging over the 
initial conditions of the particle is performed, nor is any assumption of 
equilibration made. We do assume, however, that at time t = 0 the liquid 
alone is in equilibrium. 4 

In order to go over to a stochastic description of the system, we will be 
interested in the statistical properties of representative particle trajectories 
rather than in the detailed study of each single trajectory. We assume that 
the statistical properties of the trajectories of the particle are determined by 
a small number of macroscopic parameters of the liquid. These parameters 
describe the state of the liquid at the time t = 0, before the immersion of the 
particle. The average and correlations of the force that determines the 
statistical properties of the particle trajectories may be thus obtained by 
ensemble averaging over the initial conditions of the liquid. In what follows 
we assume that the state of the liquid at t = 0 is described by a Boltzmann 
distribution corresponding to a temperature T. The Boltzmann distribution 
is determined by the liquid Hamiltonian, which is a functional of the denity 
fluctuations and their conjugate momenta. We do not assume that 
equilibrium is restored after the immersion of the particle. 

We would like to compare the stochastic description of our system to 
that given by the Langevin equation. Recall that the one-dimensional 
Langevin equation has the form 

MYc + ~ + FR(t ) = O (27) 

where FR(t) is a random force, 

(FR(t ) )R = O, (FR(t) F n ( t ' ) ) R = a b ( t - t ' )  (28) 

4 It should be realized that a linear system such as the liquid we are considering can reach 
equilibrium only through interaction with some external system. We assume that that 
interaction is turned off before the immersion of the particle. 
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The averages in (28) are with respect to the random force distribution. The 
solution of Eq. (27) is 

2 ( 0  = 2 ( t  = O) e - ~ / g ) ,  + e--~/g) t  ~' dt'  e ~/g)c F( t ' )  (29) 
,o M 

(So( t ) )  = Yc(t = O) e -(~/g)` (30) 

O (2y/M)t) (31) ( x 2 )  = ( ~ ) 2  + 2 ~  (1 - - e -  

Define Vt2h- a/27M.  The long-time average of 22 is therefore 2 Vth. 
In order to compare our equation to the Langevin equation, we take 

the ensemble average of Eq. (26), 

<Mx> = <Etot> (32) 

We compare Eq. (32) to the average over random force distribution of 
Eq. (27) 

( M ~ ) R  = - ~ ( ~ ) R  (33) 

Identifying the ensemble average with the average over random force dis- 
tribution, we conclude that the friction coefficient ? is given by the velocity 
and time-independent part of the coefficient of (~k) in (Ftot) .  

How can we determine the exact noise term and its statistical proper- 
ties? We can always write Fto t = Fto t --  ~x -+- 7x. Equation (26) therefore can 
be written as M i  = - ? i  + (Ftot + 7~). If Eq. (26) indeed corresponds to a 
Langevin equation, the noise must be related to Fto t + 7x. We have to 
prove that the noise force has the properties of a random force in the 
Langevin equation. The statistical distribution of the noise is determined by 
studying correlation functions of the type 

( [-Ftot(t ) --{- 7~(t) -- ( Ftot(t ) -t- ~)~(/) ) ] 

>([Ftot(/t) --t- ~)x(ff) - <Ftot(/' ) -]- 7x(t')] > (34) 

6. T H E  F R I C T I O N  C O E F F I C I E N T  

We have identified Fp in the equation of motion for the particle, 
Eq. (26), as the dissipative force. It is worthwhile, however, to check that 
this identification is indeed correct. We have to verify that the noise term in 
Eq. (26) averages to zero, as it should. 
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The calculation of the average of the noise term is nontrivial, since 
~(t) is correlated with the density P r at earlier times. Using the represen- 
tation of the interaction U(R) by a Fourier integral 

U(R) = f dq [exp(iq. R)] U(q) (35) 

and the fact that 

;o x(t)-- x(0)+ dt' i ( t ' )  

it is easy to see that the average of the noise term in Eq. (26) 

(F to t - -Fp)  = / f  dr pf(r, t)Vr U(r-- x( t)))  (36) 

may be written in the form S dq h (q ) exp [ - i q . x (0 ) ] ,  where h(q) does not 
depend on x(0). 

However, the final result of the average in Eq. (36) is translation- 
invariant and therefore cannot depend on x(0). The final conclusion is 
therefore that h(q) must vanish. The above argument proves that the only 
contribution to the friction coefficient comes from (Fp) .  

In order to calculate the friction coefficient, we consider a class of 
liquid-particle interactions U(R) that are spherically symmetric and short- 
ranged. For simplicity we consider interactions that vanish for R > R0. As 
explained in Appendix A, the theta function in Fp can be dropped for this 
class of interactions a long time after the immersion of the particle. 

The force Fp is therefore given by 

F p = ~ - - ~ 2 j V U ( ~ ) ~ V  U R + ~ + x ( t ) - x  t -  d R d ~  (37) 

By the mean value theorem 

x ( t ) -  x t-- = ~k(t')-- (38) 
c 

where t - R / c  < t' < t. 
We now separate the velocity of the particle into an average part and 

a fluctuating part 
i ( t )  = ( ~ ( t )  ) + h i ( t )  (39) 

Equation (39) defines 3~:(t). 
We may assume that ( i ( t ) )  is a slowly varying function of time and 

that it is small in magnitude. A precise quantitative meaning to this 
statement will be given later. Note that we assume that the average velocity 
is small, and not that the instantaneous velocity is small. It is clear that the 
instantaneous velocity might have a large magnitude, since the particle 
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interacts continuously with the liquid particles, which may have large 
velocities (although the probability for that is small). In addition, it would 
be inconsistent with any stochastic description to assume that the instan- 
taneous velocity of the particle is small. According to any stochastic 
description, there is always a certain probability, though it may be small, 
that the velocity of the particle is large. 

Using Eqs. (38) and (39), we can express Fp as follows: 

4n2 ~V2U R + ~ + 65~(t') R +  (~( t ' ) )  d R d ~  (40) 
c 

Expanding Fp in powers of A = (~( t ' ) )  R/e, we obtain 

1 VU(,_~)Iv2 [ R + ~ r  d,.q~ 

R 2 
• (.;c,(t')) ( g ( t ' ) )  7 dR d~l 

+ . . .  ( 4 1 )  

where summation over the Cartesian components i and j is understood. 
The first term in Eq. (41) vanishes because U(~t) is spherically sym- 

metric. Since (~( t ' ) )  is a slowly varying function of its argument and since 
the R integration is effectively limited to a range of the order of Ro (see 
Appendix A), we expand it in a Taylor series, 

(~( t ' ) )  = (/~(t)) + (~ ( t ) ) ( t - -  t') + ... (42) 

Using Eq. (42), we obtain 

x ( i ( t ) ) ( t ' - t ) d R d N +  ... + 4--~c VU(N) ViV:V 2 

•  (~ i ( t ) ) ( yc j ( t ) )RdRd;~ l+  (43) 
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keeping in mind that t -  R/c < t' < t. The dots in Eq. (43) stand for terms 
containing higher derivatives of (~ ( t ) )  and higher powers of (:~(t)) or 
both. 

The first term in Eq. (43) is responsible for the friction in the 
corresponding Langevin equation. 

The term proportional to ( i ( t ) )  signifies that the mass appearing in 
the Langevin equation is not the mass M appearing in the original 
Lagrangian. The terms proportional to higher derivatives of the average 
velocity are related to the existence of a nontrivial memory kernel in the 
corresponding stochastic equation. That is, the stochastic equation that 
describes the motion of the particle is actually a generalized Langevin 
equation. However, as long as the average velocity is a slowly varying 
function of time, these terms are small compared with the term propor- 
tional to the average velocity itself. 

The third term in Eq. (43) corresponds to a nonlinear modification of 
the Langevin equation. This term is small compared to the first term as 
long as (~(t))/c is small. 

We point out that if, for some reason, the higher terms in the expan- 
sion are not small compared to the first term, then the Langevin equation 
would not give an adequate description of the system. We discuss such a 
situation at the end of this section. 

The first term in Eq. (43) may be written in the form 

((Up)i) = Aa(~j(t)) (44) 

where i, j are Cartesian coordinates and Aij(t) is given by 

The time dependence of A o stems from the relation between t and t'. 
In order to obtain the friction coefficient, we have to consider the 

long-time behavior of A~j(t). At t--+ oo the average velocity approaches 
zero. For such times 

In order to calculate 
integral as in Eq. (35). 

(2rc)3 I lira A0= lira - - -  k iU(-k )  k2U(k)kj 

• (exp {/k" Ex x(')]} } 

x (t  + R )  - x(t)=6~(t') Rc (46) 

l im ,_~  Aij(t), we represent U(~)  by a Fourier 
Using Eq. (46), we obtain 

exp( ik .R)  dR dk (47) 

822/51/3-4-18 
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In order to calculate the Boltzmann average in Eq. (47), we have to 
know the difference x ( t +  R/c)-  x(t) as a functional of the initial con- 
ditions of the liquid. This would involve an explicit solution of the non- 
linear integrodifferential equation (26). It might be tempting to treat the 
noise term as a perturbation and try to obtain such an explicit solution. 
However, we have to know the solution x(t) for t ~ o% and therefore the 
perturbative solution cannot be expected to be very useful. On the other 
hand, we might expect to profit from such an expansion for the difference 
x(t + R/c) - x(t) when the time R/c ~ Ro/c is small. In order to proceed, we 
assume that the interaction between the particle and the liquid is weak 
enough so that only the first term in the perturbation expansion can be 
kept. The difference x(t + R/c)-  x(t) is, in this case, a linear functional of 
ps(t). The density ps(t) depends linearly on the initial conditions of the 
liquid, which are Gaussian integration variables. We therefore conclude 
that 

f(k,R)=-tlim ~ l e x p { i k ' I x ( t + R ) - x ( t ) ] }  I 

= e x p { - l i m ~ k 2 ( [ x ( t + R ) - x ( t ) ] 2 ) }  (48) 

where x(t) corresponds to one component of x(t). 
To obtain at this stage an explicit expression for the friction coefficient 

in terms of the parameters appearing in the Lagrangian, we use the 
following procedure. We assume that Eq. (26) is a Langevin equation of the 
form of Eq. (27) with unknown coefficients 7 and a. We use the Langevin 
equation to calculate the average in Eq. (48). We can then check our 
results and see whether the quantities that we assume are small are indeed 
small. 

We find 

I I x (  t R 2 1 +c)_X(t)l)=2v2MFRthTLc_7(M _ e~,R/Mc) ] (49) 

The function f(k, R) defined in Eq. (48) behaves differently for small and 

f(k, R)= 

large values of R, 

2 ) cM 1 k2 vth exp - ~  -~-R 2 R < - -  
Y 

exp -k2v , R > - -  
7 

(50) 
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Taking into account that the maximal relevant values of k are of the order 
of 1/Ro and denoting the length V~h(M/32) by a, we see that as long as 
a/Ro < 1 we may use the large-R form o f f (k ,  R) over the whole range of 
integration in Eq. (47). The condition VthM/TRo < 1 is valid if the "size" of 
the particle is large. 

Assuming the above condition holds, we obtain 

(2rc)3 2 vth a f U2(k) k 2 dk l i ra  Aij(t) = - 60.32 = -oij ~ c (51) 

where 32 is the friction coefficient. Note that there are corrections to 
Eq. (51) of the order of (V~h/c) a/Ro, which are small compared with the 
term we keep. 

In Eq.(51), 32 is expressed in terms of the unknown quantity 
Vth = a/232M. We would like, however, to express 32 in terms of the initial 
temperature of the liquid T, which has not appeared so far in the 
calculation. For that purpose we need an expression for a, which we 
calculate in the next section [Eq. (64)]. The strength of the force-force 
correlation cr depends on the temperature T through the Boltzmann dis- 
tribution for the initial conditions of the liquid. Combining Eqs. (51) and 
(64) yields v2th=kBT/2M [Eq. (66)]. Using this expression for vZh, we 
obtain for 7 

[ -(2n)3 k 2 dk]  1/2 (52) 
32=L ~e 2 ~BTI u2(k) 

Note that as T tends to zero, so does 32. This fact does not imply that at 
low temperatures the particle does not transfer energy to the liquid. What 
it does imply is that the nature of the energy transfer is different than what 
is predicted by the Langevin equation. In the low-temperature regime, the 
terms neglected in Eq. (43) become important and dominate the dissipation 
mechanism. 

This result is not an artifact of the model we are considering. In fact, 
evaluation of the average force at T = 0  exerted on a particle scattered 
elastically by a system of hard spheres exhibits the same behavior. The 
force does not contain a term linear in the velocity of the particle. As we 
show in Appendix B, the leading term is proportional to the square of the 
average velocity of the particle. 

We are now in a position to evaluate the magnitude of the various 
terms neglected along the way. We can also clarify the physical conditions 
under which the approximations that were done can be considered good 
approximations. 
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First let us determine the magnitude of the terms containing higher 
derivatives of (~(t)> in Eq. (43). By our assumption, 

M <~k> <R> (53) 

Each time derivative in the expansion therefore carries with it a factor of 
the order of yRo/Mc. We conclude that as long as 

7Ro/Mc < 1 (54) 

the terms containing higher derivatives of the average velocity of the 
particle are small compared with the term proportional to the average 
velocity itself. 

The terms containing higher powers of the average velocity are small if 

<,~ >/C < 1 (55) 

Recall that we have also encountered the condition 

yRo/MVth > 1 (56) 

The conditions on the various velocities in our system are therefore 

(~> < v t h < c  (57) 

Equations (54) and (56) tell us that the diffusive motion of the particle has 
to dominate the inertial motion. Otherwise, memory effects become impor- 
tant and the assumption that the particle obeys a Langevin equation is no 
longer valid. 

7. T H E  N O I S E  

The force-force correlation strength tr in the Langevin equation is 
related to the velocity- and time-independent part of the correlation in 
(34), that is, 

lim (N(T) �9 N(~ + t ) )  
z ~ o o  

where 

N(t) = Ftot(t ) + 7/~(t) - (Ftot(t) + 7~(t) > 

Since we already know from the results of the previous section that 
<F to t -Fp>  = 0  and that (Fp> = -7 (~ : ) ,  we have to calculate 

lim ( [Ftot(Z ) + 7s �9 EFtot(Z + t) + 7/~(v + t)] > 
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In Appendix C we show that the full expression for the noise can be 
replaced by 

lira ( [F to t ( r  ) - F p ( r ) ] .  I-Ftot(~ --t- t) - Fp(z  d- t ) ]  
"c ~ c~3 

As was anticipated, F t o t - - F  p is therefore the noise in the Langevin 
equation, 

Using Fourier integral representations for the density Ps and the 
interaction U, we obtain 

l im ( [-Ftot(/: ) - Fp(Z')]  �9 [-Ftot(Z" q- t) - Fp ( r  + t ) ]  ) 
T - * o o  

= --(2/~) 6 f dq  dp  q"  p U ( p )  U(q) 

x lim (pf (p ,  z) pf(q,  z + t) exp[ip" x(z) + iq" x(r + t)] ) (58) 
7 " - - * 0 O  

As was explained in the previous section, the average in Eq. (58) cannot 
depend on x(t = 0). This implies that the rhs of Eq. (58) contains a factor of 
6(p +q).  The exponential in Eq. (58) may be therefore written inside the 
integral as exp{iq.  [x(~ + t) - x(z)] }. 

Since the interaction U is short-ranged, the force-force correlation has 
a finite width in time. Keeping that in mind, we assume, as in the last sec- 
tion, that during the time interval in which the correlation is appreciable 
the difference x ( z +  t ) - x ( z )  depends linearly on PF' The difference is 
therefore also linear in the initial conditions of the liquid. We conclude 
that, to leading order in the particle-liquid interaction, 5 

lira (Ps(P, ~) Ps(q, ~ + t) exp{iq.  [-x((v + t) - x(z)] } ) 
"c ~ c~3 

= lim (py(p, z) pf(q, z + t ) ) ( e x p { i q -  [x(v + t) - x(z)] } ) 

kB T  
- (2r~)3--~2 cos(qct) 6(p + q) f (q ,  ct) (59) 

where f(q ,  ct) is defined in Eq. (48). 

5 The first equality in Eq. (59) is based on the multidimensional analog of the following 
calculation: 

fdpp2e P2/2e P/fdpe p2/2=(1 ~2)e :t2/2=(p2)(el=P>(1--~2) 
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The force-force correlation is therefore given by 

lim ( [Ftot('c ) - U p ( / : ) ] .  [Ftot(7" + t) - -  Fp(r + t ) ]  ) 

k B T(2x) 3 
- 2 f U2(q) q2 cos(qct)f(q, ct) dq =- ~(t) (60) 

Note that the temperature T appears in Eq. (59) and (60) as a result of 
averaging over the initial conditions of the liquid. 

In order to understand the qualitative behavior of ~b, we employ a 
specific form of the potential. This enables us to make an explicit 
calculation of qs. We take U(q) = U(0) exp( x 2_2~ -~Roq 1. As in the last section, 
we assume that Eq. (56) is obeyed and therefore we can use the long-time, 
diffusive form of f(q, ct), f(q, ct)=exp(--qZv2th(M/7 ) ]tl), over the whole 
range of integration. 

We obtain 

q~(t) = Const x ~ kB TU2(0) 

I c2t2 1 c4t 4 ] 
x 1 -Rg+v2h(M/7 ) Itl + 1~ [R2+v2tn(M/7)Itl] 2 

1 [ 1  c2t 2 ] 
x jR02 + vt2h(M/7 ) Itl ]5/2 exp - ~  Rg + U2h(M/y) Itl 

(61) 

The width of the correlation ~(t)  is therefore (Vzh/C 2) M/7. 
We now wish to determine how close q~(t) is to a 6 function in time. 

For that purpose we have to compare the width of ~ to the characteristic 
time scale over which the velocity changes appreciably, which is M/y. We 
conclude that if Eq. (57) holds, that is, Vth/C < 1, we can approximate ~b(t) 
by 

~(t)  ~ 3a6(t) (62) 

where 

3~ = dt qs(t) (63) 

The factor 3 in Eqs.(62) and (63) is there because ~ refers to the 
correlation strength of only one component of the force. 
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Using Eq. (63), we obtain 

a : ~ k B T ~  U2(q)q2dqf2f(q, ct)cos(qct)dt 

(27r) 3 
- 3--~-~ kB T2 Vthc a f U2(q) q2 dq (64) 

where a = v,h(M/y). 
In Eq. (64) we neglected terms of the order of [(Vth/C)(a/Ro)] 2 com- 

pared to unity. 
By comparing Eq. (64) to Eq. (51), we see that the following relation 

between 7 and a holds: 

k B T 7 = a (65) 

Equation (65) is the fluctuation-dissipation theorem. 
The thermal velocity vth is given by [using Eqs. (51) and (64)] 

kBT 
2 _ (66) 

v th=27M 2M 

Equation (66) implies that the energy of the immersed particle thermalizes 
to the correct value. 

Using Eq. (66), we obtain for a 

l- (2~Z) 3 q2 31/2 
a=[_ 2c 2 (k ,T)  3 f U2(q) dqJ (67) 

In Eq. (67), a is expressed in terms of the parameters of the original 
mechanical Lagrangian and the temperature T. 

7. S U M M A R Y  A N D  R E S U L T S  

We have introduced a model Lagrangian describing a particle 
interacting with an idealized medium (solid or liquid) and studied the 
resulting Eule~Lagrange equations. 

By integrating out the degrees of freedom of the medium, we obtained 
an exact, nonreversible, integrodifferential equation for the particle. We 
showed, without resorting to any approximation, that the force acting on 
the particle can be broken into two parts. The first part is due to the force 
the particle exerts on itself via the medium. This force is a damping force. 
The second part is the force that the medium would have exerted on a test 
particle (A particle not affecting the medium). This force has the properties 
of a random force. 
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We approximated our exact equation and obtained, under certain 
physical conditions, the usual Langevin equation. The Langevin 
parameters were calculated in terms of the parameters of the Lagrangian 
and the temperature of the medium. We assumed that the medium is 
initially in equilibrium and is described by a Boltzmann distribution at the 
temperature T. After the immersion of the particle into the medium, we did 
not assume that equilibrium is restored. We found that the long-time 
average of the kinetic energy of the particle is 3k B T, as expected. We also 
considered possible situations when the Langevin equation is not expected 
to give an adequate description of the system. 

A P P E N D I X A .  EFFECTIVE RANGE OF INTEGRATION 

The force acting on the particle is expressed in terms of an integral 
over R and ~ .  The purpose of this Appendix is to evaluate the effective 
range of integration. 

Assuming that U(R) vanishes for R > R o ,  it is obvious that the 
integration in Eq. (25) is limited to the range 

I~l <Ro (A1) 

and is also bounded by 

IR + ~ + x(t) - x ( t -  R/c)I < Ro (A2) 

The x increment may be expanded, using the mean value theorem, in terms 
of the time difference R/c and an intermediate velocity 

x ( t ) -  x ( t - R ) =  ~(t') R 
c 

where t - R/c < t' < t. Now, 

R+X(t')Rc <2Ro 

for otherwise 

R + ~ + ~(t') R c  ~> R + :~(t') R c  - I~1 ~Ro 

in contradiction with (A2). 

(A3) 

(A4) 

(AS) 
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The relevant velocities for our purpose are of the order of the thermal 
velocity, which is assumed to be small compared to the sound velocity. The 
effective range of integration is therefore bounded by 

IR[ ~< 2Ro (1 + I~(t')l) ~ 2 R ~  (A6) 

A P P E N D I X B .  D ISSIPATION IN A S Y S T E M  OF HARD SPHERES 
AT T = 0  

In this Appendix we consider the average force on a particle 
interacting with a system of hard spheres. The hard spheres are initially at 
rest. The temperature of the medium in this case is therefore T =  0. 

We start with a one-dimensional example. Let the mass of the external 
particle be M, the mass of the host particles be m, and M > m. The external 
particle is immersed into the host medium with an initial velocity + V0. 
The coordinate of the host particle to its right is x~, and the velocity of 
that host particle is V~ ( VR = 0 at t = 0). The velocities of the particles after 
they collide V~ and V~ are 

m m m  
v 6 - - -  Vo (B1) 

M + m  

2M 
V' - - -  V o (B2) R - M + m  

After the collision both particles continue to move to the right. Since 
Vh > V6, the host particle hits the next host particle first. After this 
collision its velocity becomes zero, and the second host particle continues 
to move with a velocity Vh. A disturbance moving with a velocity Vh is 
created. This disturbance no longer affects the external particle. The exter- 
nal particle moves after the first collision with a velocity V~ and collides 
again with the same host particle, which is again at rest, only this time at a 
different position. The external particle therefore loses a fraction of its 
momentum at each collision. The momentum loss in a single collision is 
given by 

2Mm 
A P = M +  m V (B3) 

where V is its velocity prior to the collision. The average number of 
collisions per unit time is V/l, where l is the average distance between the 
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host particles. The average momentum loss per unit time is therefore given 
by AP(V/l). The average force acting on the particle is therefore given by 

2Mm 1 
F -  - -  V 2 (B4) 

M + m  l 

The average force acting on the particle is therefore proportional to the 
square of the velocity, and not to the velocity itself. 

The above result is modified for finite temperatures in the following 
way. Consider a system of hard spheres at a temperature T, such that the 
thermal velocity of the host particles Vthh is larger than V. In this case 

2Mm 
AP ~ V~ (B5) 

M + m  

so that the average force acting on the particle becomes 

2Mm 1 
F Vth V-- 7V (B6) 

M + m  l 

Note that the temperature dependence of 7 here is exactly the temperature 
dependence of y given by Eq. (51). 

The basic ingredient that forces 7 to vanish at T =  0 is the fact that the 
momentum loss of the external particle when colliding with a particle at 
rest is proportional to its own velocity. 

Consider now the situation in more than one dimension. Most of the 
host particles with which the external particle collides are at rest. When the 
external particle collides with a host particle at rest the results of the one- 
dimensional example are valid. Namely, the average momentum loss is 
proportional to the velocity of the external particle, and therefore the 
average force acting on the external particle due to collisions with host 
particles at rest is proportional to the square of its velocity. 

Some of the host particles are not at rest, but are moving because they 
collided in the past either with the external particle or with other host 
particles. One may think that collisions with moving host particles would 
change the results of the one-dimensional example. Note that since all the 
host particles were initially at rest, all the velocities of the particles are 
proportional to Vo, the initial velocity of the external particle. At the nth 
collision of the external particle, it therefore hits a host particle with a 
velocity given by 

Vp(") = Vok(p ") (B71 
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where k(p ") is a vector which depends on the mass ratio, the initial 
configuration, and the direction of the initial velocity, but not on the 
magnitude of the initial velocity. Similarly, the velocity of the external 
particle at the nth collision is given by 

V(') v i,(-) (B8) ext  ~--- �9 O ~ e x t  

Let the direction of the initial velocity be denoted by the unit vector ~i. The 
momentum loss in this direction due to the nth collision is 

AP = MVo k('). Ci (B9) 

where k (') has the same properties as k~'). The velocity of the external 
particle in the direction 6 i is given by 

and therefore 

V e x t  = I /  ] . r ( n ) " ~ i  (BIO) r O ~ e x t  

A P = M ~  Ve~t (Bl l )  
kext ei 

The important point here is that the coefficient of Vex t does not depend on 
I/ext . The momentum loss of the external particle at each collision with a 
moving host particle is therefore proportional to the velocity of the external 
particle. The average force due to such collisions is therefore also propor- 
tional to the square of the velocity of the external particle. 

The above procedure may seem rather artificial, since, by the same 
token, AP is proportional to Vo and not to Vex t. AS a result, it could be 
argued that the average force on the external particle is proportional to its 
velocity with a friction coefficient proportional to its initial velocity. 
However, the coefficient of V o in the average momentum loss at the nth 
collision must be a decreasing function of n, which vanishes for large values 
of n. 

The physical reason for that is that the moving host particles are 
losing kinetic energy to the other host particles. Therefore the probability 
that at the nth collision the external particle will hit a host particle with a 
given finite fraction of the initial velocity V o vanishes with n. 

At finite temperatures, the situation in more than one dimension is 
qualitatively the same as in the one-dimensional example discussed in the 
beginning of this Appendix. Once Vext becomes small compared with Vthh, 
we have again only one velocity scale in the system, namely Vt~. The 
average momentum loss in this case is proportional to V~, resulting in 
)~ o C T  1/2. 
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A P P E N D I X  C. C O R R E C T I O N S  TO T H E  N O I S E  

The full noise term in the Langevin equation is Fto t + 7~. In Section 7 
we computed the force-force correlation strength ~z using Fto t - -Fp  instead. 
In this Appendix we evaluate the corrections 30. 

The corrections 3~ can be expressed as &z = ~-~oo 3q}(t) dr, where 

3~5(t) = 31 ~b(t) + 32r 

= lim (hf (z) 'Af(r+t))  

+ lim { ( A / ( T ) - [ F t o t ( Z + t ) - F p ( z + t ) ] )  

+ (Af(Z + t). [Ftot(Z ) -  Fp('C)])} (Cl)  

The additional noise force is given by 

Af = (Fro t + 7~) -- (Fto t -- Fp) = Fp + 7:i (C2) 

Consider first 61r 

31r.b(t)= lim (Af(z) 'Af(z+t))  
" c ~ o o  

= lim ( [Fp(z)  + 7~(z)] �9 [Fp(z + t) + 751(~ + t)] ) (C3) 
l : - - -+oO 

Equation (C3) consists of four terms. Consider the first term: 

lim (Fp(z) �9 Fp(z + t) ) 

= lim ~ f f d R d ~ d R ' d ~ ' V U ( ~ l ) . V U ( ~ l ' )  1-~ 
~ - ~  (47z2) RR' 

• (V2U IR +;~ + x(,)- x (~-R)] 

• + ~' +x(~ +t)-x(, +t-~)]) 

- dR dR'  dp dq(q" p) q2p2U2(p) UZ(q) RR' 

• exp(iq - R) exp(ip �9 R') 

•  ( exp  ( i q ' [ x ( z ) - x  ( z - R ) ] }  
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Using the same techniques as in Sections 6 and 7, we calculate the average 
in Eq. (C4): 

lina (exp {iq- [ x ( z ) - x  (~ _ R ) ] }  

xexp{ip.[x(z+t)--x@+t R ' ) ] } )  

=f(q 'R)f (P'R')exp{-P'q lim ( [ x ( z ) - x ( r - R ) ]  

where f(k, R) is defined in Eq. (48). 
Using the mean value theorem, we express the difference 

x ( ~ ) - x ( v -  R/c) as follows: 

x ( Q - x ( r - R )  =~(t')R-c (C6) 

where r - R/c < t' < r. Similarly, 

x(z + t )  - x T + t - = ~ ( t " )  - -  ( C 7 )  
c 

where ~ + t - R'/c < t" < r + t. 
Using Eqs. (C5)-(C7), we obtain 

lina (Fp(r).Fp('r + t))  

- dR dR' dp dq dp(q- p) qep2Ue(p) U2(q) RR---; 

x exp(iq �9 R) exp(ip" R')f(q, R)f(p, R') 

[ RR'limo~ (*(t ')  �9 i ( t " ) ) ]  (C8) xexp - p  �9 q --~- 

We now expand 

I RR'lim (Mt')-  ~( t") ) ]  exp - p. q c----5-- 
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inside the integral. All even terms in the argument of the exponential 
vanish because U is spherically symmetric. Inside the average in Eq. (C8) 
we may also expand ~(t') in a Taylor series as follows: 

ic(t') = it(z) + fc(z)(t' - z) + -.. (C9) 

and similarly 

/~(t') = ~(~ + t) + ~(z + t)(t" - ~ - t) + --. (El0)  

The required correlation may therefore be expressed as 

lim (Fp(z)'Fp('~ + t)) 

(27c) 6 
- (47z2c)2 f f  dR dR' dp dq(q" p)2 q2p2U2(p ) UZ(q) 

• exp(iq �9 R) exp(ip" R ' ) / ( q ,  R)f (p ,  R') 

• {(/c(~)./c(r + t)) + (~(~)./c(~ + t))(t'-~) 

+ (~c(z) ' i (z  + t ) ) ( t " - - z - -  t) + .. .  

1 (RR') 2 } 
+ 6  c -------~-(p'q)2((z~(r)'~(r+t)))3+ ''" (C l l )  

The dots in Eq. ( C l l )  stand for terms containing correlations of higher 
derivatives of ~ or higher powers of correlations of ~k or both. 

The first term in Eq. ( C l l )  is given by 

(2~) 6 
f f  dR dR' dp dq(q" p)2 q2p2U2(p ) U2(q) 

(4n2c) 2 

• exp(iq �9 R) exp(ip �9 R') 

• R) f (p ,  R ' ) ( i c ( r ) - i c ( z + t ) )  =~,2(~:(r) -~c(r+t))  (C12) 

The higher terms in the expansion are discussed later in this section. These 
terms contribute to 3cr. 

Consider now the second and third terms in Eq. (C3). The third term, 
for example, is 

lim (Fp(z) .  7~(~" + t ) )  

7(2z) 3 1 
-- 4rc2 f iqq2U2(q)-R [exp(iq" R ) ] .  

• limoo ( ( e x p { i q . [ x ( ~ ) - x ( ~ - R ) l } ) i c ( ~ + t ) ) d q d R  (C13) 
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Using the equality 
& 

~(~ + t) = - i  ~-pp exp[ip.  ~(z + t)] Ip =o 

we may write Eq. (C13) in the following form: 

lim (Fp(r) .  7~(~ + t ) )  

= ~(27z) 3 ~ ~ 2 2 1 
�9 j qq u (q) ~ [exp(iq. R)] 

4rc2 6pip= 0 

x lim ( e x p { i q . [ x ( r ) - x ( ~ - R ) l  } e x p [ i p . i ( ~ + t ) ] ) d q d R  

(c14) 
The average in Eq. (C14) can be evaluated using the same methods as in 
Eq. (C4). We obtain 

lim (Fp(z).7~(z + t)) 
~cx5 

= - 7 2 ( ~ ( ~ )  �9 + t ) )  - ~2(~(~). ~(~ + t ) ) ( t ' -  ~) + . . .  ( c 1 5 )  

where r - R/c < t' < r. 
Using Eqs. (C12) and (C15), we see that all the leading terms in the 

required correlation function sum up to zero. Consider now the corrections 
61a due to terms that contain higher derivatives of i. The average 
(x(n)(~C) " x(m)(T -}- t ))  can be written as (d/dt)(x(")(z) �9 X TM- l)(r  -[- t ) ) .  The 
corresponding &la therefore obeys the relation 

f ~ d  d ~1 O" OC t~-'~ (x~~ ~m ~)(r+t))= (x(")( , ) .x~"-l)( ,+t)) l~ 
--oo 

(C16) 

The correlations (xl")(z).x TM ~)(*+t)) can be computed using the 
Langevin equation. These correlations vanish for large Itl, for n, m -  1/> 1. 
The contribution to 61a due to those terms therefore vanishes. 

Consider now the corrections &a that come from the term containing 
higher powers of the average ( M r ) i ( r + t ) ) .  The leading contribution 
comes from 

~l q0(t ) (27"g) 6 f f  dR dR' dp dq(q. p)2 q2p2U2(p ) U2(q) 
(4~2c) 2 

x exp(iq. R) exp(ip.R') f (q,  R) f (p ,  R') 

1 ( R R ' )  ~ 
x6 c -----T- (p.q)2 [ (~ ( r ) .Mr+t ) ) ]3  

C4 [- (X(T)"  X("C "t- t ) ) ]  3 ( C 1 7 )  
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The average in Eq. (C17) can be computed using the Langevin equation. 
Since 

we conclude that 

( i (z)  �9 i ( r  + t)} = V2h e -  ~;/Mll,I (C18) 

~2 v6. e -  (3UM)Itl (C19) 

The corresponding correction to a is 

(c2o) 

and using the definition of Vth, Vth = a/27M, we see that 

~IG~(V~/C 4) (C21) 

There are also contributions to 61a from terms containing higher powers 
and higher derivatives of i.  The leading contribution comes from terms of 
the form 

(2~) 6 
6~qs(t) ~ (4n2c) 2 f f  dR dR'  dp dq(q-p)2 q2p2UZ(p ) U2(q) 

x exp(iq �9 R) exp(ip- R') f(q, R ) f ( p ,  R')  

1 (RR')  2 
x6 c - - T - ( p ' q ) 2 [ ( i ( z ) ' ~ ( z + t ) ) ] 2 ( i c ( z ) ' ~ ( z + t ) ) ( t "  z _ t )  

y27Ro 
~ M - ~ c  [(~(r)"/~(r + t))33 (C22) 

In Eq. (C22) we used the fact that z + t - R ' / c <  t" < z  + t and that the 
effective range of the R' integration is of the order of Ro. 

The corresponding 61a is 

I~ 4, 7Ro 
61a ~ a ~ (C23) 

Mc r  

Using Eq. (54), we see that the leading contribution to 61a is indeed given 
by Eq. (C21). Recall that in Eq. (57) we already assumed that vth/c < 1. We 
conclude that 61a is small compared to a itself. 
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We now discuss the other  corrections to a, 62a, defined in Eq. (C3). 
We have 

f 
o o  

620- = 62q~(t) dt 
- - 0 ( 3  

= <af( 'c)  - [Ftot('r + t) - Fp(z + t)]  > + < Af('r + t) .  [Ftot('c) - Fp(z)]  > 

(C24) 

We notice that  the quant i ty  

f 
or) 

0-12= dt lim ( F l ( z ) ' F 2 ( z + t ) )  (C25) 
co T ~ o o  

has the properties of a scalar product .  It therefore obeys the Schwartz 
inequality. Using this fact and Eqs. (64) and (C21), we obtain 

16e0-1 ~ 0"1/2(61 0") 1/2 ~ O'(/)2h/C 2)  (C26) 

and since vth/c< 1 [Eq.  (57)] ,  we conclude that 62a/0-< 1. 
The final conclusion of this Appendix is therefore that  the corrections 

to the force-force correlat ion strength due to the addit ional noise force are 
negligable compared  to a. 
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